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The Anomalous High Reactivity of Ca+ with S8 in the Gas Phase: [CaS31+ and [CaSl11+ 
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The ion Ca+(g) reacts more rapidly than any other M+(g) with s&), first forming [CaS31+, which undergoes 
reversible addition of s 8  to [CaSl11+, with slower formation of a second more stable isomer of [CaSl11+ believed 
from density functional calculations to have the structure (r2-S3)Ca(y4-1,3,5,7-cyclo-S8). 

Richly diverse metal-sulfur chemistry now encompasses in- 
numerable clusters with metal sulfide cores, ] a special MoFe7S9 
cluster in nitrogenase which is the active site for the activation 
of N2,2 two-dimensionally non-molecular metal sulfides and 
their intercalates,lJ a plethora of metal compounds with 
polysulfide ligands: elementary redox reactions of metals with 
sulfur mediated by amine solvents,5 metal complexes with 
polythiane ligands,6 bionanocrystallites,7 and hundreds of gas 
phase negative ions [M,S,]- generated by laser ablation of 
metal sulfides. We are investigating another facet, namely the 
fundamental reaction M+(g) + Sx(g) in the pristine gas phase,9 
devoid of supramolecular influences. We have investigated 
M+(g) from all of the Periodic Table,lo but none reacts with 
&(g) more rapidly than does Ca+(g). 

Our reaction vessel is the ion trap of a Fourier Transform Ion 
Cyclotron Resonance (ICR) mass spectrometer. The Ca+(g) is 
generated by laser ablation of CaF2, and S8 pressure is 
maintained at 1 X 10-8 mbar by continuous vaporisation of the 
solid contained in a capillary adjacent to the CaF2. 
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Fig. 1 Positive ions formed in the reaction of Ca+ (all other ions ejected prior 
to reaction) with S&) at 1 X lo-* mbar, after reaction periods of 1.5 s (a)  
and 2.5 s (h)  

Mass spectra of the Ca+ + S8 reaction mixture (Fig. 1) show 
that Ca+ is mostly converted to products at 1.5 s and is totally 
consumed after 2.5 s. This pseudo-first order rate of reaction 
with s8 is about twice that of Mg+, and exceeds the rates of Sc+ 
and all of the first-row transition metals.9 The closed-shell ion 
K+ does not react with s8. 

In early stages of the reaction (ca. 1 s), [CaS3]+ is the 
dominant product, but it then diminishes rapidly in intensity as 
the larger ions [CaS9]+, [CaSlo]+ and [CaSI1]+ develop, with 
[CaSI1]+ as the final product. The smaller ions [CaS*]+, [CaS3]+ 
and [CaS4J+ also scavenge adventitious water. The distribution 
of [MS,]+ products for Ca is different from the general pattern 
observed for other metals, in which the major first product is 
[MS4]+, growing with y even through 6,8, 10, and with [MS ]2]+ 
as the largest and latest major product. The ions [CaS3]+, 
[CaS9]+ and [CaS ]]+ have uncommon compositions, and thus 
the chemistry of Ca+ with s g  is different in product distribution 
as well as reactivity. 

In order to probe the reaction patterns we have isolated 
individual [CaS,]+ products in the ICR cell, and examined their 
further reactivities in the presence of Sg. Isolated [CaS3]+ reacts 
with S g  to form mainly [CaS9]+, [CaSl~l+ and [CaS1l]+. 
However, the steady growth of [CaS I in this experiment, and 
evident also in Fig. 1, is deceptive, because when [CaSI1]+ is 
isolated (in the presence of the background Sg) it undergoes 
rapid decomposition. Fig. 2 shows that [CaS1l]+ is 90% 
dissociated within 2 s, to ca. 70% [CaS3]+ and ca. 20% [CaS9]+ 
in the same period. Evidently there is a fast process in which 
[CaS, on collision with Sg reverts to [CaS31+ through loss of 
S8. However, the concentration of [CaS11]+ decreases not to 
zero, but to a steady state and then slowly increases. This result, 
together with the steady increase of [CaSI1]+ apparent in Fig. 1 
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Fig. 2 Temporal evolution of the more abundant ions after isolation of 
[CaS, in the presence of Ss at 1 X 10-8 mbar. The [CaS, ,I+ was isolated 
1 s after laser ablation, during which period more than one isomer of 
[CaS I]+ had been generated. 
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and all other experiments, indicates that there is at least one 
additional isomer of [ CaS I]+. 

Scheme 1 shows the transformations for [CaS3]+, [CaS9]+ and 
[CaSI1]+. The [CaS1l]+ observed at any time is a mixture of at 
least two isomers, one of which dissociates very rapidly to 
[CaS3]+ and another which is stable. Thus the reactivity 
experiment reported in Fig. 2 also begins with a mixture of 
isomers of [CaS1 and this has been confirmed by varying the 
total time between the laser ablation event and the isolation of 
[CaSI as expected the apparent extent of rapid dissociation 
of [CaSI1]+ to [CaS3]+ diminishes as the storage time of all 
[CaS ,I+ increases. 

Our understanding of the structures and reactivities of these 
ions is supported by explorations of the structure-energy 
surfaces using density functional computations, building on 
experimental and theoretical knowledge of S, molecules: I 
some key results are summarised here. 

Approach of Ca+ towards Sg in either of the directions shown 
in Fig. 3(a) allows total reduction in the total energy 
concomitant with scission of two S-S bonds and the separation 
of CaS3 from S5. These are believed to be collisional pathways 
for the observed rapid formation of [CaS3]+, while the less 
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Fig. 3 Some significant structures for CaS,+ reactions and products. ( a )  Two 
of the approaches of Ca+ to S8 which on energy minimisation yield separate 
[CaS3]+ and Ss. ( h )  The most stable planar structure of [CaS3]+, Ca-S 2.63, 
2.63, 3.14 A; S-S 2.10, 2.10 A. (c) The approach of [S3Ca]+ to the rim of 
S8 to form a dissociable isomer for [CaSII]+. (4 The most stable isomer 
calculated for [CaS,,]+: Cabs in the CaS3 segment are 2.71 A, while Ca-S 
(cyclo-S8) are 3.16, 3.20 A. (e )  The most stable structure calculated for 
[ CaS9]+. 

probable approach of Ca+ close to the fourfold axis of s8 forms 
[CaSx]+. The most stable structure for [CaS3]+ is the planar 
quadrilateral, Fig, 3(b). The Ca-S distances in [CaS,]+ are 
longer by ca. 0.4 A than the longest M-S distances of transition 
metals in comparable [MS,]+. This, together with the reduced 
directionality of bonding to Ca, and the stability of orthogonal 
torsional angles in S-S-S-S chains, are principal factors in the 
distinctive structure-energy surface for [CaS,]+. Fig. 3(c) 
shows the approach of [S3Ca]+ to an S-S edge of Ss which 
yields the easily dissociable isomer of [CaSI 1]+, while Fig. 3 ( 4  
illustrates a more stable isomer of [CaS , I+  resulting from facial 
(1,3,5,7) approach of [S3Ca]+ to Ss. Similar structural principles 
apply to [CaS9]+, for which the [Ca(S3)3]+ structure shown in 
Fig. 3(e) is calculated to be the most stable. The main general 
conclusions are that the special character of the reactions of Ca+ 
with s8 derives from the ability of Ca+ to extract and stabilise S3 
(as opposed to the extraction of S2 and S4 by transition metals), 
and from the retention of favourable cyclic S ,  conformations 
(particularly crown S,) in the products. 

The high reactivity of calcium with sulfur in the gas phase 
provides a reference point for evaluation of the dominant 
influences of environment in the different patterns of reactivity 
and structure in condensed phase metal sulfur chemistry. 
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